Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Black soldier fly larvae (BSFL) have demonstrated cold tolerance that suggests the presence of cryoprotective molecules. The objective of this research was to investigate if the proteins present in the BSFL have ice recrystallization inhibition (IRI) activity and how different environmental factors affect the activity. Osborne fractionation of the defatted BSFL was performed to separate the proteins based on solubility, then preparative size exclusion chromatography was used to fractionate the albumin fraction by molecular size to isolate IRI or ice binding proteins. The major proteins in the active fractions were identified by mass spectrometry, and molecular dynamic simulations were performed with two proteins identified to investigate their behaviors in an ice-water system. The main finding is the strong IRI activity of the water-soluble BSFL albumin fraction and the column fractionated fraction 1. This fraction had a 40.4-79.9% reduction in ice crystal size at 1% concentration and under a wide pH (3-9) and salt (10-200 mM NaCl) concentration. Pure proteins recovered were sequenced and identified as cuticle proteins by mass spectrometry. One cuticle protein demonstrated strong H-bonding and structural flexibility by molecular dynamic simulations, explaining the IRI and ice binding activity. This is the first time BSFL protein is reported to possess IRI activity, and such protein extract can be feasibly obtained compared to other naturally occurring antifreezing proteins.more » « lessFree, publicly-accessible full text available February 19, 2026
- 
            Growing interconnect bandwidth demand in large datacenters requires energy-efficient optical transceivers that operate with four-level pulse amplitude modulation (PAM4) to enable high per-wavelength data rates. Further increases in bandwidth density is possible by leveraging wavelength-division multiplexing (WDM), which optical link architectures based on silicon photonic microring modulators (MRMs) and drop filters inherently enable. This paper presents high-speed PAM4 transmitter and receiver front-ends implemented in a 28nm CMOS process that are co-designed with these silicon photonic optical devices to enable energy-efficient operation. The transmitter utilizes an optical digital-to-analog converter (DAC) approach with two PAM2 AC-coupled pulsed-cascode high-swing voltage-mode output stages to drive the MRM MSB/LSB segments. A 3.42Vppd output swing is achieved when operating at 80Gb/s PAM4 with an energy efficiency of 3.66pJ/bit. The receiver front-end interfaces with a silicon-germanium avalanche photodiode (APD) and utilizes a low-bandwidth input transimpedance amplifier followed by continuous-time linear equalizer and variable-gain amplifier stages. Biasing the APD to realize a gain of 2 allows for -7dBm optical modulation amplitude (OMA) sensitivity at 56Gb/s PAM4 with a BER=10-4 and an energy efficiency of 1.61pJ/bit. Experimental verification of the full PAM4 transceiver at 50Gb/s operation shows -4.66dBm OMA sensitivity at a BER~4x10-4.more » « lessFree, publicly-accessible full text available April 21, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Alfvén wave collisions are the primary building blocks of the non-relativistic turbulence that permeates the heliosphere and low- to moderate-energy astrophysical systems. However, many astrophysical systems such as gamma-ray bursts, pulsar and magnetar magnetospheres and active galactic nuclei have relativistic flows or energy densities. To better understand these high-energy systems, we derive reduced relativistic magnetohydrodynamics equations and employ them to examine weak Alfvénic turbulence, dominated by three-wave interactions, in reduced relativistic magnetohydrodynamics, including the force-free, infinitely magnetized limit. We compare both numerical and analytical solutions to demonstrate that many of the findings from non-relativistic weak turbulence are retained in relativistic systems. But, an important distinction in the relativistic limit is the inapplicability of a formally incompressible limit, i.e. there exists finite coupling to the compressible fast mode regardless of the strength of the magnetic field. Since fast modes can propagate across field lines, this mechanism provides a route for energy to escape strongly magnetized systems, e.g. magnetar magnetospheres. However, we find that the fast-Alfvén coupling is diminished in the limit of oblique propagation.more » « less
- 
            Alfvén waves as excited in black hole accretion disks and neutron star magnetospheres are the building blocks of turbulence in relativistic, magnetized plasmas. A large reservoir of magnetic energy is available in these systems, such that the plasma can be heated significantly even in the weak turbulence regime. We perform high-resolution three-dimensional simulations of counter-propagating Alfvén waves, showing that an $$E_{B_{\perp }}(k_{\perp }) \propto k_{\perp }^{-2}$$ energy spectrum develops as a result of the weak turbulence cascade in relativistic magnetohydrodynamics and its infinitely magnetized (force-free) limit. The plasma turbulence ubiquitously generates current sheets, which act as locations where magnetic energy dissipates. We show that current sheets form as a natural result of nonlinear interactions between counter-propagating Alfvén waves. These current sheets form owing to the compression of elongated eddies, driven by the shear induced by growing higher-order modes, and undergo a thinning process until they break-up into small-scale turbulent structures. We explore the formation of current sheets both in overlapping waves and in localized wave packet collisions. The relativistic interaction of localized Alfvén waves induces both Alfvén waves and fast waves, and efficiently mediates the conversion and dissipation of electromagnetic energy in astrophysical systems. Plasma energization through reconnection in current sheets emerging during the interaction of Alfvén waves can potentially explain X-ray emission in black hole accretion coronae and neutron star magnetospheres.more » « less
- 
            Abstract X-ray bursts are among the brightest stellar objects frequently observed in the sky by space-based telescopes. A type-I X-ray burst is understood as a violent thermonuclear explosion on the surface of a neutron star, accreting matter from a companion star in a binary system. The bursts are powered by a nuclear reaction sequence known as the rapid proton capture process (rp process), which involves hundreds of exotic neutron-deficient nuclides. At so-called waiting-point nuclides, the process stalls until a slower β + decay enables a bypass. One of the handful of rp process waiting-point nuclides is 64 Ge, which plays a decisive role in matter flow and therefore the produced X-ray flux. Here we report precision measurements of the masses of 63 Ge, 64,65 As and 66,67 Se—the relevant nuclear masses around the waiting-point 64 Ge—and use them as inputs for X-ray burst model calculations. We obtain the X-ray burst light curve to constrain the neutron-star compactness, and suggest that the distance to the X-ray burster GS 1826–24 needs to be increased by about 6.5% to match astronomical observations. The nucleosynthesis results affect the thermal structure of accreting neutron stars, which will subsequently modify the calculations of associated observables.more » « less
- 
            Abstract The control of the in-plane domain evolution in ferroelectric thin films is not only critical to understanding ferroelectric phenomena but also to enabling functional device fabrication. However, in-plane polarized ferroelectric thin films typically exhibit complicated multi-domain states, not desirable for optoelectronic device performance. Here we report a strategy combining interfacial symmetry engineering and anisotropic strain to design single-domain, in-plane polarized ferroelectric BaTiO 3 thin films. Theoretical calculations predict the key role of the BaTiO 3 /PrScO 3 $${({{{{{\boldsymbol{110}}}}}})}_{{{{{{\bf{O}}}}}}}$$ ( 110 ) O substrate interfacial environment, where anisotropic strain, monoclinic distortions, and interfacial electrostatic potential stabilize a single-variant spontaneous polarization. A combination of scanning transmission electron microscopy, piezoresponse force microscopy, ferroelectric hysteresis loop measurements, and second harmonic generation measurements directly reveals the stabilization of the in-plane quasi-single-domain polarization state. This work offers design principles for engineering in-plane domains of ferroelectric oxide thin films, which is a prerequisite for high performance optoelectronic devices.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available